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A NUMERICAL STUDY OF THE FLOW OVER ELLIPSOIDAL 
OBJECTS INSIDE A CYLINDRICAL TUBE 
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SUMMARY 

A numerical scheme is developed to obtain the flow field around one, two and five ellipsoidal objects inside a 
cylindrical tube. The scheme uses the Galerkin finite element technique and the primitive variable ( w p )  
formulation. The two-dimensional incompressible Navier-Stokes equations are solved numerically by using the 
direct mixed interpolation method. A Picard iteration scheme is used for the solution of the resulting system of 
non-linear algebraic equations. The computer code is verified by checking with known analytical solutions for the 
flow past a sphere. Results for the shear stress distributions along the ellipsoids, forces and drag coefficients are 
obtained for different geometric ratios and Reynolds numbers. Some of the intermediate computational results on 
the velocity fields developed are also reported. 
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1. INTRODUCTION 

Calculations of particulate flows in capillaries are very important for many applications. Examples 
include the immiscible displacement of a viscous oil by a less viscous fluid from the pores of the soil or 
a rock' and the study of the transport of blood cells in capillary vessels. 

Direct measurements of these flows are extremely difficult owing to the small size of the tubes. 
Because of this, all previous research work has been concentrated on the analytical and numerical 
approaches. Wang and Skalak' studied analytically the viscous creeping flow of a liquid through a 
cylindrical tube containing a line of rigid spherical particles. Secomb and Skalak3 used lubrication 
theory to model capillary asymmetric flows of a spherical blood cell. The disadvantage of the 
analytical methods is that they only solve for problems in idealized cases, mostly under the creeping 
flow (Rep = 0) assumption. Since analytical solutions for finite Reynolds number have not been 
obtained, one needs to employ numerical methods to solve for this kind of flow. Of the conventional 
methods of numerical analysis, the finite difference method is  difficult to adapt to the problem at hand 
because of the complexity of the boundary conditions. The finite element method appears more 
promising because it may accommodate irregular flow geometry and relatively complex boundary 
conditions. 

Masaka and Skalak4 studied the asymmetric flow around circular cylinders in a two-dimensional 
channel by a finite element method applied to the Stokes equations. Westborg and Hassage? simulated 
the flow of inviscid bubbles and viscous drops in capillary tubes using a Galerkin finite element 
method. Both studies have assumed Stokes flow, which yields a linear system of differential equations. 
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Little work has been done by the finite element method with the full Navier-Stokes equations, most 
probably because of complexities arising from the non-linear nature of the problem. 

The choice of a particular set of dependent variables is directly dependent on the problem under 
consideration and the type of discretization used. The vorticity-streamfunction formulation avoids the 
explicit appearance of the pressure terms in the governing equations. The pressure field can be 
obtained by solving the Poisson-type pressure equation, but the method is only convenient in the 
Cartesian system of co-ordinates. In the cylindrical system of co-ordinates, which will be used in this 
paper, the pressure equation takes a different form (not Poisson type) and the boundary conditions of 
the pressure are very difficult to define. Another limitation of the vorticity-streamfunction formulation 
is that the boundary conditions of the vorticity at the solid walls are unknown. The accurate 
specification of the boundary condition of vorticity along the solid boundaries is extremely important, 
since it directly affects the stability and accuracy of the solutions. On the other hand, the primitive 
variable (u-u-p) formulation is computationally more intensive but more convenient, because the 
variables have direct physical interpretation and the boundary conditions are explicit. In addition, the 
resulting system of equations is more suitable to be used in a curvilinear co-ordinate system. 

The objective of the present study is to obtain a numerical solution for the steady state problem of 
flow past ellipsoids in a narrow tube. The technique adopted uses the Galerkin weighted residual 
function and Gauss quadrature over an eight-node isoparametric quadrilateral element with biquadratic 
velocity and bilinear pressure basis fimctions (the mixed interpolation algorithm). The primitive 
variable (u-u-p) formulation and direct methods are adopted for the solution of the momentum and 
continuity equations. Results for the shear stress distributions along the ellipsoid and the drag 
coefficient for the case of one ellipsoid are obtained for several geometric parameters. Solutions are 
obtained for Reynolds numbers up to 320, based on the tube diameter. In the case of more than one 
ellipsoid, results are reported for the dimensionless pressure along the axis of the tube and on the 
surface of the ellipsoids for different Reynolds numbers. 

2. FORMULATION OF THE PROBLEM 

It is assumed that the fluid is incompressible, the viscosity is constant and the ellipsoids are rigid. 
Furthermore, the flow may be considered as quasi-steady and the body forces are negligible. The 
governing equations are 

1 -  
P 

ii . tii = - -vp + vv=ii, 

where ii is the fluid velocity vector, p is the pressure, p is the density of the fluid and v is the kinematic 
viscosity of the fluid. 

Figure 1 depicts the geometry of the problem with one ellipsoid. Of the variables shown, uo is the 
uniform velocity at the inlet of the tube, d is the diameter of the tube and a and b are half of the major 
and minor axes of the ellipsoid respectively. Since it is more convenient to work with dimensionless 
variables, the following quantities are introduced: 
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Figure 1. Geometry of the problem 

The conservation equations are reduced to the following dimensionless form in the cylindncal system 
of co-ordinates: 

au* av* t'* - + + + - = o ,  
ax+ ay Y* 

(W u* -+v* -=  &* &* --+- ap* I (a%* -+-+ a%* 1 &* v * )  
&* @* @* Reb &*' @*' y*@* y*' ' 

where x* is the longitudial co-ordinate and y* is the radial co-ordinate. Reb is the Reynolds number 
based on the minor axis of the ellipsoid. This is sometimes referred to as the Reynolds number of the 
particle: 

There is another dimensionless number, the Reynolds number of the flow through the tube, which is 
given by the expression 

It is apparent that the ratio of the two Reynolds numbers is a geometric ratio of the problem at hand. 
The boundary conditions of the above equations are the no-slip condition on the walls of the tube 

and the sides of the ellipsoid. The inlet velocity is uniform and free outflow conditions are imposed at 

Figure 2. Boundary conditions of the problem together with computational domain and mesh 
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the outlet boundary. The boundary conditions of the problem are shown in Figure 2 together with the 
computational domain and mesh. 

In order to avoid unnecessary reptition, in the remainder of this work the superscript asterisk will be 
omitted from all the dimensionless variables in the CoIlServation equations. It should be remembered, 
however, that henceforth the variables are dimensionless. 

3. FINITE ELEMENT FORMULATION 

The Galerkin weighted residual finite element method is used to formulate and solve the computational 
model based on equations (2)-(4). Using velocity basis functions as weights in the momentum 
equations and pressure basis functions in the continuity equation, we obtain the following integral 
equations for the elements: 

av av ap 1 a2v a% 1 %  v 
u -+  v-+-  - - - + - +-- - - / /Q[ ax ay ay Y @  3 

The quantities hu, 6v and Sp are the velocity and pressure weighting functions. Using Green’s theorem, 
the last two second-order finite element equations may be reduced to the first-order partial differential 
e4.lUatiOnS 

where Re is the integration surface for each element and re is the integration boundary for each 
element. All the boundary conditions except for one at the outlet are either of the essential (Dirchlet) 
type or of the natural (Neumann) type corresponding to zero normal derivatives. Therefore, the cyclic 
integral in equation (8a) is zero and the cyclic integral in equation (8b) becomes 

1 au -f y-6udT = ypdudr, 
Tr an 

(9) 

where rd) is the integration length of each element at the outlet. 
The velocity in each element is interpolated by an eight-node biquadratic basis function. In order to 

achieve the same order of accuracy for all the variables, the pressure is interpolated by a four-node 
bilinear basis h c t i o n  within the same element. Hence, we have in each element 

8 8 4 

i= 1 i= I i= I 
u = c Niu,, v = N,v,, p = c lug,. (10) 
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A? 4 2  = - 
60 

Substitution of equations (10) into equations (8) and (7a) yields the final set of algebraic element 
equations, which can be written in matrix form as 

c .x=o ,  (11) 

0 0  0 0 
0 0  0 0 
0 0  0 0 
0 0 0 0 

1 0 0 10yc/Ay+4 
0 0 20yc/Ay+2 2oY,/Ay-2 
0 0  -1 10YclAY - 4 
0 0  0 0 

where C is a 3 x 3 matrix and X is a vector with components u,p and v. The components of the matrix 
Care 

(121) 

For the boundary element at the outlet, Ci2 may be calculated by the following expression, which stems 
from equation (9): 

where Ay = yi - yl  and y ,  is the distance in the ydirection from the origin of the co-ordinates to the 
centre of the element. 
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The velocities uk and vk in the matrix components cl, and c33 are guessed in the initial stage of the 
solution. Subsequently the velocity values are obtained form the last iteration until convergence is 
achieved. The discretized equations which result from the application of the Galerkin finite element 
method are non-linear. Therefore they need to be solved by iteration. In the present study a simple 
Picard iteration technique is used for the solution of the non-linear algebraic equations. 

4. RESULTS AND DISCUSSION 

The accuracy of the numerical scheme was verified with known analytical flow solutions. For this 
purpose the case of Poiseuille flow as solved using the scheme described above. The convergence 
criterion used a maximum fractional deviation of for every variable and a mesh size of 30 
elements (three in the y-direction, 10 in the x-direction). The solution converged in five iterations using 
Picard's iterative technique. The velocities derived from the numerical method agree very well with the 
analytical solutions. The accuracy of prediction of the velocities was better than 0401%. 

Subsequently the numerical programme was tested for the special case of a sphere located at the 
centreline of the tube. Figure 3 shows the results obtained for the drag coefficient of the sphere, 

c,=j---, FX 
I puinb2 

where b is the radius of the sphere and Fx is the total force acting on the sphere in the x-direction. The 
latter was calculated numerically as 

where 

The numerical results, for the drag coefficient of the sphere are compared with the analytical solutions 
obtained by Bohlin6 in Figure 3. It is observed that when the Reynolds number is relatively small, the 

- aotilin's work 
0 0 0 0 0 Present work 

0.1 1 10 103 
Reynolds nurrScr, Reb 

Figure 3. Drag on a single spherr symmetrically located in a circular tube 
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results agree very well with the analytical solutions. The agreement breaks down at higher Reynolds 
numbers, where the analytical results of Bohlin are not valid. This is another indication of the validity 
of the numerical scheme developed. 

In the case of the flow around the ellipsoid in the tube it is of particular interest to obtain general 
results for a number of geometric conditions. For this purpose we define two geometric ratios, the first 
for the shape of the ellipsoid and the second for the tube diameter divided by the axis of one ellipsoid 
which is transverse to the flos. The two ratios b and K are given as 

A mesh sensitivity analysis was performed for the solution of a single ellipsoid located at the centreline 
of the tube. The results for /? = 1.5, K = 1.8 and Reb = 1.0 are depicted in Figure 4. It is evident that a 
grid of 597 nodes and 168 elements is adequate for the calculation of the global quantities of interest. 

Figure 5 shows the velocity field in the cylinder with one ellipsoid at its centreline for particle 
Reynolds numbers equal to 1,20 and 65. It is observed that the flow becomes asymmetric at the higher 
Reynolds numbers and that there is a small recirculation region at the downstream end of the ellipsoid. 

Figure 6 shows the dimensionless shear stress distributions along the surface of the ellipsoid for 
= 1.4 and K = 1.8 for a single ellipsoid. The stresses are made dimensionless by dividing by the 

quantity f p 4  and they are normalized by multiplying by the factor Reb/24, which is the inverse of the 
Stokesian drag on a sphere. The stresses are obtained numerically by 

Yi+l - Y l X l + l  - xi @ , + I  - x J 2  - bl+l - YJ2  
A1 A1 + =v, AP ‘ti = (afl - a,), ~~ 

where 

Reb %+I - xi 

400.0 

0 0 0 0  

390.0 

.- 

.- 0 370.3 

360.0 

*. 

0 

p=1.5 

K =1.8 

Re,= 1 .O 
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Figure 4. Grid independence test 
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Figure 5 .  Velocity vector field obtained for the flow past one ellipsoid for several Reynolds numbers 
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Figure 6. Dimensionless shear SmSs distribution along the ellipsoid for different Reynolds numbers in the case of m ellipsoid 

The depicited dimensionless distance along the ellipsoid, A, is equal to s/a. The results are shown for 
particle Reynolds numbers Reb equal to 1, 5 ,  10, 20 and 60. It is observed that the dimensionless shear 
stress decreases as the Reynolds number increases. There is also a symmetric distribution of the shear 
stress along the surface of the ellipsoid around the minor axis at the low Reynolds numbers. This is due 
to the symmetry of the velocity field at the downstream end of the ellipsoid. The velocity field at the 
downstream end of the ellipsoid. The symmetry breaks down at the higher Reynolds numbers. 

The shear stress distribution along the surface of the ellipsoid for different flow geometry 
coefficients K in the case of one ellipsoid was also obtained. As expected, the shear stress becomes 
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lower as the size of the ellipsoid diminishes in comparison with the cylinder diameter and more area 
around the ellipsoid is available to the flow of the liquid. 

Figure 7 depicts the drag coefficient of the ellipsoid as a hc t ion  of the Reynolds number of the 
ellipsoid for the oneellipsoid case!. As in the case of the sphere, the drag coefficient decreases as the 
Reynolds number increases. The linear relationship on the logarithmic graph implies an exponential 
relationship between CD and Reb of the form 

CD = A@,)" (22) 

The constants A and n are given in Table 1 for a number of geometric ratios /3 and K. 

The drag coefficient versus the geometric ratio of the flow, K, in the case of one ellipsoid is shown in 
Figure 8 for three different Reynolds numbers. It is observed that the drag coefficient is almost 
constant at high values of K and that it increases rapidly when K approaches unity. This is due to the 
fact that as K tends to unity the area available to the fluid is considerably reduced and the velocity at the 
sides of the ellipsoid becomes very high. 

Figure 9 depicts the dependence of the drag coefficient on the other geometric ratio, /?, for one 
ellipsoid. C, has been normalized by multiplying by Reb/24. It is observed that CD is not very 
sensitive to /I, especially at the higher Reynolds numbers. The variations in the drag coefficient along 
the length of the tube for various geometric ratios and Reynolds numbers were also obtained. It was 
observed that only very close to the entrance of the tube does the drag coefficient deviate from its 
value. 

Figure 10 shows the velocity vector field in the tube with two ellipsoids at the centreline for 
Reynolds numbers of 1,40,70 and 80. Recirculation is seen when the Reynolds number is greater than 
40. Figure 11 shows the velocity vector field in the tube with two ellipsoids at its centreline for a 
Reynolds number equal to 40 and four different distances between the two ellipsoids. Recirculation 
occurs when the distance between the two ellipsoids is shorter. 

Figure 12 depicts the variation in the dimensionless pressure along the centreline of the tube and the 
surface of the ellipsoids versus the distance along the tube for Reynolds numbers of 20,40 and 60 in 
the case of five ellipsoids. It is observed that there is a small amount of pressure recovery downstream 
of each ellipsoid. 

Figure 13 depicts the variation in drag coefficients on the ellipsoids in the case of two ellipsoids with 
the particle Reynolds number for different distances (0 between the ellipsoids. It is observed that the 
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Figwe 7. Variations in the drag on the ellipsoid with the Reynolds number of the ellipsoid for = 1 and K = 1.6, 1.8 and 4.0 in 
the case of one ellipsoid 
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Table I. Pairs of coefficients (A, n )  for equation (22) 

B K =  1.6 K =  1.8 K = 4.0 

1.4 (299, - 0.987) (1 92, - 0.973) (47, - 0.847) 
1.6 (396, - 0-977) (21 1 ,  - 0.976) (68, - 0.819) 
1.8 (425, - 0.982) (230, - 0.981) (72, - 0.851) 
2.0 (456, - 0.985) (249, - 0'984) (74, - 0.858) 

(r 

n 

0.0 
0.0 2.0 4.0 6.b 3.C 

Geometry rc t io  of t-e ' low. 

Figure 8.  Variations in the drag on the ellipsoid with the flow geometq coefficient K for = 1.4 in the case of one ellipsoid 

Figure 9. Drag coefficient of the ellipsoid as a function of the geometric ratio /? for different Reynolds numbers in the case of one 
ellipsoid 
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Figure 10. Velocity vector field of the flow past two ellipsoids for Reynolds numbers of I ,  40.70 and 80 at K = 1 4 and /? = 1.8 

second ellipsoid always has a higher drag coefficient. This is most pronounced when the ellipsoids are 
closer. 

The results of the present work are restricted to rather low Reynolds numbers based on the cylinder 
diameter (up to Re = 320). At higher Reynolds numbers the effective wake at the downstream end of 
the ellipsoid is considerably magnified and vortices are shed downstream at high frequency.'** When 
instabilities are amplified, the laminar assumption is not valid any more and the solution scheme breaks 
down. The growth of instabilities, any flow transition and the breakdown of the numerical scheme 
depend on the dimensionless parameters Re, and K. 

5. CONCLUSIONS 

The results obtained for the case of one ellipsoid in the tube show that the shear stress distribution is 
almost symmetic with respect to the minor axis of the ellipsoid. Asymmetry is observed at higher 
Reynolds numbers, when the wake behind the ellipsoid becomes significant. The asymmetry in the 
flow field and shear stress is a consequence of the velocity asymmetry (and slight apparent 
recirculation) at the downstream end of the ellipsoid. The drag coefficient is (to a good approximation) 
an exponential function of the Reynolds number of the ellipsoid for a wide xange of Re,, with the 
exponents depending on the geometric ratios f l  and K. The drag coefficient is sensitive to the geometric 
ratios K and /I and rather insensitive to the position of the ellipsoid along the tube. The results obtained 
for the case of two and five ellipsoidal objects in the tube show that the recirculation occurs at lower 
Reynolds number for five ellipsoids than for two ellipsoids. At the same Reynolds number the 
recirculation is enhanced when the distance between the ellipsoids is short. 
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F i p  I 1. Velocity vector field of the flow past two ellipsoids for a Reynolds number equal to 40 and four different distances 
bawcm the two ellipsoids at K = 1.8 and /? = 1.8 
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Figure 13. Variations in the drag on two ellipsoids with the Reynolds number for K = 1.8 and /I = I4 and for distances bawcen 
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